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Abstract

Computer vision technologies can help visually chal-
lenged users take better quality pictures by automated guid-
ance, empowering them to interact more confidently on so-
cial media. Our goal is to help them avoid the most common
distortions, such as blur, exposure, and noise, complement-
ing work on aesthetic aspects such as framing. To advance
progress on the problem of assessing visually challenged
user-generated content (VC-UGC), we built the largest sub-
jective image quality and distortion dataset. It contains
40K real-world distorted VC-UGC images, 40K patches,
and 2.7M human perceptual quality and distortion labels.
Using this resource, we created a blind picture quality and
distortion predictor that learns local-to-global spatial qual-
ity relationships and achieves state-of-the-art performance
on VC-UGC pictures, significantly outperforming standard
models. Using a multi-task model, we also created a pro-
totype feedback system that guides users to mitigate quality
issues and take better pictures. The new dataset and predic-
tion models will be made public following the review pro-
cess.

1. Introduction

Computer vision breakthroughs have the power to build
community and make technologies more accessible at the
largest scales. One example is making social media more
accessible to visually challenged people. Being able to au-
tomatically understand picture and video content by AI-
driven assistance could benefit low-vision/blind users when
selecting pictures to upload on social media. While there
has been progress on building visual tools to assist visu-
ally challenged users on other tasks [8, 5, 52, 1], studies
[51, 4, 28, 45] have shown that such users often still rely
on friends for several of these tasks, making them feel vul-
nerable and disempowered. These studies have shown that
the visually impaired often ask for information about, and
assistance with picture quality.

Current No-Reference Image Quality Assessment (NR-
IQA) models can predict both perceptual quality and distor-
tion types, based on perceptually relevant ‘quality-aware’

Fig. 1: Quality feedback to assist visually challenged users: The captured im-
age is passed through P2P++ (Sec. 4), which generates global quality and distortion
scores. The predicted scores are used to provide suitable feedback on distortions
present and ways to mitigate them. (Sec. 5)

statistics [30], yet, obtaining high accuracy remains a chal-
lenging problem [49, 40, 20]. Moreover, pictures captured
by visually challenged users, without any guiding feedback,
usually suffer from higher levels of distortions [8]. Since
state-of-the-art NR-IQA predictors are trained on datasets
containing pictures captured by users having normal vision,
they do not transfer well [8] to visually challenged user-
generated content (VC-UGC). Creating accurate IQA mod-
els for VC-UGC content needs large and appropriately la-
beled datasets, which currently do not exist.

To better assist visually impaired people to take better
pictures, a feedback system should describe the distortions
that occur as pictures are being captured. Distortions arise
because of imperfect capture devices, focusing issues, stabi-
lization problems, and sub-optimal lighting conditions, and
all are often amplified in VC-UGC. Moreover, multiple dis-
tortions often intermix, making them harder to rate and clas-
sify. The absolute degree of distortion is not the same as
perceptual quality, since the latter is also deeply affected by
the content and by perceptual processes such as masking
[44, 32].

In this work, we show that automatic picture quality pre-
diction models can supply guidance and feedback to ad-
dress this problem. Recent work on perceptual QA [49, 48]
has shown that modeling the relationship between local and
global distortions can lead to better visual quality predic-
tions. Inspired by this, our proposed dataset comprises of
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images taken from VizWiz, along with both randomly se-
lected and salient patches extracted from them. We also
conducted a large-scale visual psychometric study on both
the images and extracted patches, whereby we collected hu-
man subjective quality scores and distortion labels. This
large dataset enabled us to design new IQA models that can
accurately predict perceptual quality scores and also cate-
gorize distortions.

Further, we used these learned models to build a feed-
back system to help visually challenged users take better
pictures. While pictures captured by visually challenged
users often suffer from aesthetic flaws such as incorrect
framing or orientation [42, 19, 5], our work focuses on help-
ing users improve the perceptual quality of their captured
pictures, rather than photographic aesthetics. Ultimately, a
feedback system should be able to assist users to improve
both aspects.

The contributions we make on these impactful but chal-
lenging problems are summarized:
• We built the largest subjective image quality and dis-

tortion database targeting pictures captured by visu-
ally challenged users. This new resource contains about
40K images collected from VizWiz [8] and 40K patches
(half randomly selected and half salient). We conducted
a large-scale subjective picture quality study on them col-
lecting 2.7M each of quality labels and distortion labels.
This is also the largest publicly available distortion clas-
sification dataset. We also collected about 75K ratings on
2.2K ORBIT images (frames extracted from ORBIT [29]
videos) (Sec. 3).

• We created a state-of-the-art blind VC-UGC picture
quality and distortion predictor. Using a deep neural ar-
chitecture based on the recent PaQ-2-PiQ model [49], we
created a multi-task system able to predict both the per-
ceptual quality of pictures captured by visually impaired
users, and the possible presence of five common picture
distortions. Since this model is trained on patches, we
can use it to predict spatial maps of both quality and dis-
tortion types. Our proposed model referred to as P2P++
achieves top performance on the new dataset and an inde-
pendent mini-dataset (ORBIT images) when compared to
other NR-IQA models. (Sec. 4 and 5.2)

• Using the multi-task model, we also created a unique
prototype feedback system to assist visually chal-
lenged users to take better quality pictures. We pro-
vide feedback on overall quality, along with suggestions
on how to mitigate quality issues.

2. Related Work
Image Quality and Distortion Datasets: The most
heavily-used image quality datasets are older corpora of
synthetically generated distortions of natural pictures [37,
25, 34, 35]. Since synthetic distortions are quite differ-

ent from authentic, real-world distortions, NR-IQA mod-
els trained on them perform poorly on real-world content
[12, 26, 49]. These resources however do not include la-
bels on distortion types [12]. The Flickr-Distortion dataset
[3] contains synthetic distortion labels on 804 Flickr UGC
images, but it does not contain any quality labels, and is
not public. The VizWiz-QualityIssues [8] dataset contains
images taken by visually challenged users, along with dis-
tortion labels for a few common impairments and aesthetic
flaws. The images in the dataset were generated under real
use conditions via the VizWiz mobile app [5]. However,
since it lacks picture quality scores and supplies only 5 sub-
jective distortion scores per image, it cannot be used in its
current form for our purposes.
Image Quality Models: In this application, we require
NR-IQA (blind) models, which have recently advanced sig-
nificantly. Popular NR-IQA models [30, 31, 47, 13, 11,
24, 6, 23] work well on legacy single synthetic distortion
datasets [37, 34, 35] but perform poorly on real-world UGC
data [26, 49]. PaQ-2-PiQ [49] leverages relationships be-
tween local and global quality to achieve current high per-
formance on all IQA datasets. A few multi-task models like
IQA-CNN++ [21] and QualNet [14] are available that use
relationships between quality and distortion features to pre-
dict both picture quality scores and distortion categories.
These perform well on synthetic datasets, but struggle on
real-world UGC pictures and distortions. The authors of
[8] used an Xception backbone trained on ImageNet [10]
to predict distortions on the VizWiz pictures and achieved
promising results.
Assisting the Visually Challenged: Several applications
now exist to help visually challenged users capture bet-
ter images through audio feedback, mostly built for visual
recognition tasks [1, 19, 5]. TapTapSee [1] helps users take
focus-adjusted images, while VizWiz Ver2 [5] and EasySnap
[19] use simple darkness and blur detection algorithms. The
authors of [42] developed an assisted photography frame-
work to help users better frame their photos, using an im-
age composition model to assess aesthetic quality. The Scan
Search [52] application uses the Lucas-Kanade [27] optical
flow method to track feature points and determine camera
stability. The authors of [8] developed algorithms to detect
the recognizability and answerability of images captured by

Fig. 2: Sample images from the two datasets - VizWiz (top row) and ORBIT
(bottom row), each resized to fit. The actual images are of highly diverse sizes and
resolutions.
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blind users. None of these tasks is predicated on perceptual
models, trained on human data, or directed towards VC-
UGC quality prediction.

3. Dataset and Human Study

Here, we outline the details of our new VC-UGC dataset
and the online human study used to collect subjective qual-
ity labels. The proposed dataset contains 39, 660 images
(from VizWiz [8], sample images in Fig. 2) and 39, 660
patches extracted from them, half of which are salient
patches, the other half cropped at random. We also collected
2.7M quality ratings and distortion labels on them. This is
the first quality-focused dataset dedicated to developing as-
sistive technology for visually challenged photographers.

3.1. Dataset construction

Categorizing Distortions: The focus of our work is to
study technical distortions such as blur, over/under expo-
sure, and noise, but not aesthetic flaws such as framing,
mood, and content selection. While the latter are important,
they involve different capture problems and perceptual pro-
cesses and should be treated differently. As mentioned pre-
viously, natural distortions are extremely diverse and com-
mingle with each other, making it hard to exhaustively cat-
egorize them [12, 26]. Since the images in our dataset were
captured by the visually impaired, they are more heavily
distorted. We focused on obtaining the labels on five ma-
jor distortion categories: focus blur (‘blurry’), motion blur
(‘shaky’), overexposure (‘bright’), underexposure (‘dark’),
and noise (‘grainy’), and two other categories: ‘none’ (the
absence of distortion) and ‘other’ (non-identifiable distor-
tions)
Cropping Patches: Relationships between local and global
spatial quality have been shown to be important and, when
modeled, lead to improved quality predictions [49, 48]. We
carried these ideas further by studying the impact of the
choice of patches on quality prediction. To do this, we di-
vided the entire dataset into two random halves. On half
the images, a random patch was cropped to 40% of each its
linear spatial dimensions. On the other half, using the pyra-
mid feature attention network [50], a most visually salient
patch of the same (40%) dimensions was cropped. All of
the patches have the same aspect ratios as the original im-
age they were cropped from (refer Fig. 3).

Fig. 3: Two kinds of spatial patches were cropped from images, all to 40% of
the original image dimensions: randomly selected and salient patches cropped from
disjoint halves of the overall image corpus.

Fig. 4: Study workflow for both image and patch sessions.

ORBIT Data: To study the cross-dataset performance of
our model, we also created a separate, smaller dataset of
images from the ORBIT database [29]. We captured 2, 235
frame images and gathered global quality ratings on them
(suppl. material for details).

3.2. Subjective Quality and Distortion Study

The human study was carried out on AMT in 3 stages -
image, patch, and ORBIT sessions. Overall, 3, 945 subjects
participated in the study and, after rejection and cleaning,
we collected an average of 34 ratings on each image and
each patch. Our study was accessible to all platforms and
geographical locations.

3.2.1 AMT Study Design

The study workflow is shown in Fig. 4. The subjects were
asked to participate in two tasks - image quality rating and
distortion type identification. Each subject was asked to
read separate per task instructions, followed by a quiz to as-
sess their understanding. After passing the quiz, there was
a training phase containing five sample distorted images, to
familiarize with the task (details in suppl. material). Fol-
lowing training is the testing phase where each subject rated
110 images, followed by answering a questionnaire.

3.2.2 Subject Rejection

As indicated in previous studies [49, 48, 8, 12, 39, 26, 43],
online crowdsourcing carries the risk of distracted, inad-
equately equipped, disengaged, or even frankly dishonest
subjects, so there is often a high percentage of unreliable
labels. We used various strategies to screen the subjects us-
ing criteria applied both during and after the study.
During Task: During the instruction phase, we checked
whether the subject’s browser window, browser and OS ver-
sion, and zoom (non-magnified) condition satisfied the re-
quirements stated in the instructions. If they did not, their
participation was ended. To detect dishonest workers, at
the halfway point of each testing phase, we processed the
scores already given to determine whether they had been
giving unchanging ratings (only nudging the slider / sup-
plying haphazard scores) on either tasks and where rejected
accordingly.
Post Task: Of the 110 images viewed in a session, 5 were
randomly repeated. A subject was rejected if their “repeat”
scores were not consistently similar to the scores given the
first time. We also included 5 images from the LIVE-FB
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dataset [49] as “gold” set and screened the subjects if their
ratings did not match the golden ones. Overall, we rejected
the scores given by 814 subjects.

3.2.3 Data Cleaning

The remaining scores after subject rejection were processed
by a series of data cleaning steps: (1) removed 43 im-
ages (1.3K ratings) of a constant value. (2) removed the
ratings provided by subjects who did not wear their pre-
scribed lenses (0.9% of total ratings removed). (3) applied
the ITU-R BT.500-14 [18] (Annex 1, Sec 2.3) subject re-
jection protocol to screen 56 more outlier subjects (4) For
each image and patch, we also rejected outliers from the in-
dividual score distributions, as follows. We first calculated
the kurtosis [2] to determine the normality of the scores.
If they were determined to be normal, the Z-score outlier
rejection method [17] was applied. Otherwise, the Tukey
IQR method [41] was applied. Overall, including all sub-
ject and score outlier rejections, around 1.7% of the ratings
were tossed. We were left with about 2.7M subject scores
(1.36M on images, 1.33M on patches) on VizWiz images,
and 76K ratings on the ORBIT images.

3.2.4 Data Analysis

Inter-subject quality consistency: An inter-subject con-
sistency test [49, 48] was carried out by randomly divid-
ing the subject pool into two disjoint sets of equal size,
then calculating the Spearman Rank Correlation Coefficient
(SRCC) [22] between the two corresponding sets of MOS
(mean opinion score). The average SRCC over 50 such
random splits yields a useful measure of inter-subject con-
sistency. The average SRCC on VizWiz images was 0.93,
on patches was 0.90 (0.87 on random and 0.92 on salient
patches), and on ORBIT was 0.93. These results substan-
tially validates the efficacy of our data collection and subject
rejection processes.
Intra-subject quality consistency: We computed the Lin-
ear Correlation Coefficient (LCC) [36] between the mean
of the ratings on the 5 “golden” images with the original
scores. The median PCC value over all subjects was 0.90
for the VizWiz image study, 0.90 for the patch study, and
0.87 for the ORBIT study. Again, these high correlations
help validate our overall subjective study protocol.
Patch vs Image quality: Fig. 5 shows scatter plots of im-
age MOS against patch MOS, for both kinds of patches.
The SRCC between image and patch MOS was 0.84 indi-
cating a strong relationship between local and global image
quality. The SRCC between image MOS and random and
salient patch MOS was 0.82 and 0.86, respectively, suggest-
ing that salient patches could play a stronger role when rep-
resenting global picture quality. This may be because some

Fig. 5: Scatter plots of patch vs image MOS correlations. Image MOS vs all
patches (left), random patch (middle) and salient patch (right) MOS cropped from
the same image.

Fig. 6: Ground Truth MOS and distortion histograms of the two databases.
Left column is the data collected on VizWiz [8] images, and right column is the
data collected on ORBIT [29] images. The plots below show the distribution of the
distortions in each dataset.

distortions are salient, and/or that distortions on salient re-
gions are more annoying.
Distortion Score Analysis: To conduct a consistency anal-
ysis, we converted the binary distortion labels into prob-
abilistic values by dividing the number of positive labels
of each distortion by the total number of labels collected
and then computed the correlations between the resulting
vectors. The average SRCC (inter-subject consistency) val-
ues for the distortion categories were: blurry (0.75), shaky
(0.62), bright (0.68), dark (0.60), grainy (0.35), and none
(0.85). Some distortion categories were harder to consis-
tently identify than others. The high agreement on ‘none’
shows that it is easier to determine the absence of distor-
tions. Similarly, the SRCC values computed between im-
age and patch distortions were: blurry (0.73), shaky (0.68),
bright (0.60), dark (0.62), grainy (0.46), and none (0.73).
The lower correlations for some distortions (like ‘dark’)
suggests that the perception of distortions that are globally
apparent may be more weakly impacted by local quality.
MOS and Distortion Distributions: Fig. 6 (top) plots the
MOS distribution of the images in the VizWiz and ORBIT
datasets. Fig. 6 (bottom) shows the proportional distribu-
tion of distortion ratings in the two datasets. As expected,
‘blurry’ was the most prominent distortion in both datasets.
Overall, ORBIT contains more images of higher quality and
with fewer distortions. Also, ‘grainy’ and ‘dark’ images,
which occurred less often, are associated with less consis-
tent ratings and are thus harder to predict. As we show in
Sec. 4.2.2, this non-uniform distribution of distortion types
makes it harder to train models that can perform equally
well on all classes.

4



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVPR
#11433

CVPR
#11433

CVPR 2022 Submission #11433. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

4. Modeling and Experiments
Our goal is to create an application that accurately pre-

dicts and provides feedback on the perceptual quality and
distortions present in a picture. We designed efficient model
architectures able to predict quality and distortions, while
accounting for local-to-global percepts. Our model ana-
lyzes quality and distortion types both separately and to-
gether using a multi-task framework.

4.1. Data pre-processing

Unlike the quality scores, which could be used in their
raw form, the distortion labels had to be transformed into
suitable output labels for training. Since distortion type
prediction is a classification task, binarizing the labels was
our first choice. We considered multiple options to de-
cide a threshold on the per-distortion proportions of ratings.
However, binarization led to poor consistencies in the data
(suppl. material), leading to worse predictions since hard la-
bels reduce robustness on out-of-distribution samples [33].
Hence, we finally decided to train and test all our models
using probabilistic labels.

4.2. Modeling

Given the two prediction tasks at hand, we studied both
no-reference image quality models and distortion classifi-
cation models, with a goal of building a single multi-task
models capable of both tasks.

4.2.1 Image Quality Models

Architecture: The model structure consists of a deep
CNN backbone, followed by two-dimensional global aver-
age pooling, then two fully connected layers of size 512
and 32, respectively, and a single output neuron with sig-
moid activation. The model was trained for 10 epochs using
Adam optimizer with MSE loss. The learning rate was set
to 5× 10−4 for the first 5 epochs, then with a decay rate of
0.1 per epoch. We experimented with ResNet-50V2 [16],
Xception [9], and ResNeXt-50 [46] backbones pre-trained
on ImageNet [10] and fine-tuned on VizWiz images.
Dataset Splits: We used the same train-validation-test split
as provided by the authors of VizWiz-QualityIssues [8].
The training, validation, and testing set consists of 23.9K
(60.3%), 7.7K (19.6%), and 8K (20.1%) images respec-
tively. Similar split was applied to the patch dataset.
Baselines and evaluation metrics: The trained models
were compared against several baselines, including shal-
low and deep learners (whose code was publicly available).
We included the popular image quality prediction models,
BRISQUE [30], NIQE [31], and FRIQUEE [13], which
extract perceptually relevant statistical image features to
train an SVR. We also compared against deep picture qual-
ity models such as CNNIQA [20] and NIMA [40] (with a

Table 1: Performance of image quality models evaluated on the new
dataset. Higher values indicate better performance.

Model SRCC LCC
BRISQUE [30] 0.71 0.72

NIQE [31] 0.68 0.70
FRIQUEE [13] 0.72 0.69
CNNIQA [20] 0.78 0.79

NIMA [40] 0.83 0.83
P2P-Baseline (ResNet-18) [49] 0.87 0.88
P2P-RoIPool (ResNet-18) [49] 0.90 0.90

Xception 0.86 0.88
ResNeXt-50 0.90 0.89

ResNet-50V2 0.90 0.90

VGG-16 [38] backbone and a single regressed quality score
as output), PaQ-2-PiQ baseline, and PaQ-2-PiQ RoIPool
with backbones pre-trained on LIVE-FB [49], then fine-
tuned on our dataset. Similar to all standard work in the
field of image quality assessment, we evaluated the model
performances using SRCC and LCC.
Results: From Table 1, we note that models trained with
shallow learners on extracted features yielded lower predic-
tion accuracy than the deep models, reflecting the limited
abilities of traditional features to capture complex distor-
tions of natural images. CNNIQA [20], which is a shal-
low CNN model, outperformed the traditional algorithms,
but fell short of the performances of deeper models. We
observed that performance generally was higher for deeper
models (ResNet-50V2, ResNeXt-50, and Xception) outper-
formed NIMA [40] implemented with a VGG-16 backbone.
The PaQ-2-PiQ RoIPool model achieved the best perfor-
mance, demonstrating the efficacy of exploiting the rela-
tionship between local (patch) and global quality prediction.
The performances of the deeper backbones were all similar
(and close to human performance – SRCC 0.93 as stated in
Sec. 3.2.4 ), suggesting that more heavier models would not
produce better performances.

4.2.2 Distortion Prediction Models

Architecture and Implementation: Because our mod-
els generates continuous probabilistic outputs, as described
in Sec. 4.1, we treat distortion prediction as a regression
problem. Similar to the quality model architecture, our pro-
posed model consists of a deep CNN backbone, followed by
global pooling, and two fully connected layers. Instead of
producing a single output, it has seven output neurons, each
expressing a score for a separate distortion class. As before,
we experimented with three backbones - ResNet-50V2 [16],
Xception [9], and ResNeXt-50 [46]. The hyperparameters
were kept the same except the initial learning rate was set
to 10−3. The same train-validation-test split was used.
Baselines and evaluation: The trained models were com-
pared against other deep models. We include two models
from [3], where the authors used pre-trained Atrous VGG-
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Table 2: Performances of distortion prediction models on the new
dataset. All values are SRCC, where higher values indicate better per-
formance.

Model BLR SHK BRT DRK GRN NON

AtrousVGG-16 [3] 0.75 0.73 0.60 0.69 0.45 0.77
ResNet-101 [3] 0.81 0.77 0.69 0.75 0.45 0.81

Xception [8] 0.79 0.75 0.65 0.80 0.56 0.78
ResNeXt-50 0.82 0.75 0.68 0.79 0.56 0.82
ResNet-50V2 0.81 0.78 0.67 0.81 0.50 0.82

16 [7] and ResNet-101 [15] backbones with a single fully-
connected head layer to predict synthetic distortions. We
also tested the model [8] composed of an Xception [9] back-
bone (pre-trained on ImageNet [10]), fine-tuning the head
layers only. The distortion labels and outputs lie within
[0,1], and we again used SRCC to evaluate the performance.
Results: As may be observed from Table 2, the fine-tuned
deep models outperformed the baselines. Atrous VGG-16
[3] performed the worst, whereas the ResNet-50V2 [16] and
ResNeXt-50 [46] models consistently performed best on
most distortion classes. All the fine-tuned models yielded
similar performances across all classes. However, the dis-
tortion distribution in the dataset is quite skewed (Fig. 6),
hence the prediction performances varied across classes.
The low performance on the ‘bright’ and ‘grainy’ classes
is consistent with the low agreement among the subjects on
these distortions (Sec. 3.2.4).

4.2.3 Multi-task Models

Architecture and Implementation: Combining both
tasks – quality and distortion type predictions – into a sin-
gle model bears two advantages: a) fewer computations and
faster inferencing, crucial for supplying real-time feedback
to users (Sec. 5.2); b) shared distortion and quality features
can lead to better predictions [14]. Starting with PaQ-2-PiQ
(P2P) RoIPool [49] as a base, we modified it by attaching a
multi-task head to conduct both quality and distortion pre-
dictions. This multi-task model, which we call P2P++, pro-
duces quality and distortion predictions for each class, on
both entire images and local patches simultaneously (Fig.
7). The head has a shared layer of size 512, followed by
two separate layers of size 32, dedicated to separate tasks.
In addition to training P2P++ (which has a ResNet-18 [15]
backbone pre-trained on LIVE-FB [49]), we also experi-
mented with ResNet-50V2 [16] and Xception [9] baselines
trained on images only. The hyperparameters for training
were the same as for the distortion model setup, using the
same train-validation-test split.
Baselines and evaluation: We compared the perfor-
mance of our models against two multi-task deep models
- IQACNN++ [21] and QualNet [14]. IQACNN++ consists
of a shallow CNN backbone, whereas QualNet contains a
VGG-16 [38] backbone and predicts global quality using

Fig. 7: The proposed P2P++ model extends the PaQ-2-PiQ [49] RoIPool model by
including a multi-task head that simultaneously produces both quality and distortion
scores, at both patch and whole image scales.

Table 3: Performance of the multi-task models on the new subjective test
dataset. All values are SRCC, and higher values indicate better perfor-
mance.

Model BLR SHK BRT DRK GRN NON Qual

IQACNN++ [21] 0.65 0.52 0.27 0.57 0.40 0.62 0.78
QualNet [14] 0.70 0.60 0.46 0.70 0.29 0.71 0.81

Xception 0.78 0.73 0.64 0.75 0.51 0.78 0.88
ResNet-50V2 0.80 0.76 0.62 0.77 0.51 0.76 0.90

P2P++ 0.82 0.77 0.60 0.78 0.53 0.78 0.90

Table 4: Quality prediction results on the patches in the new subjective
dataset. Higher values indicate better performance.

All Patches Salient Random

Model SRCC LCC SRCC LCC SRCC LCC
IQACNN++ [21] 0.71 0.71 0.71 0.70 0.72 0.72

QualNet [14] 0.77 0.77 0.78 0.77 0.77 0.76
Xception 0.84 0.84 0.85 0.84 0.84 0.83

ResNet-50V2 0.87 0.87 0.87 0.87 0.86 0.86
P2P++ 0.88 0.87 0.88 0.88 0.87 0.87

fused distortion and quality features.
Results: From Table 3, it may be observed that the shallow
IQACNN++ [21] model yielded the worst results. QualNet
[14] was able to outperform IQACNN++, but struggled on
multiple distortion categories. The larger models equipped
with ResNet-50V2 and Xception backbones performed very
well, but the much lighter P2P++ model was able to achieve
the best performance on almost all categories. Again, by in-
ferencing on learned local-to-global quality and distortion
features, better results were obtained at lower cost. As be-
fore, all of the models had more difficulty predicting the
‘bright’ and ‘grainy’ distortion types.

4.3. Ablations

Performance on patches: Table 4 summarizes the quality
performance of the multi-task models on patches (distor-
tion results in Suppl. material). This is important, since
giving feedback on local distortion occurences may further
assist visually impaired users. P2P++ performs the best on
both the random and salient patches, closely followed by
ResNet-50V2. This validates the localization capabilities
of the patch model. The performance on salient patches
was slightly better than on random patches, since, perhaps
they often capture visibly obvious and annoying distortions
that draw attention and are easier to predict.
Failure Cases: Fig. 8 (a) was rated high (MOS = 76.2) by
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Fig. 8: Failure cases: VizWiz images where predictions differed the most
from human quality scores. Reduce fig size

the humans, but a low predicted score (MOS = 50.2) from
P2P++. Perhaps the blurry “bokeh” effect regions of the
hand and background were less noticeable to raters than the
high quality (salient) foreground. The image Fig. 8 (b) was
rated as worse (MOS = 42.5) by the subjects than by P2P++
(MOS = 62.7). The non-uniformity of the blur across the
image could’ve caused this discrepancy. While the sharp
and distorted regions of the image are of roughly equal ar-
eas, the distortions were likely more salient to the human
subjects, causing them to rate it severely. The same regions
were likely predicted as less salient by P2P++. These re-
sults suggest more work needs to be done on understanding
the interplay between saliency, distortion annoyance, and
bokeh.

5. Applications of the proposed model
The models described on Sec. 4 can be extended to pro-

vide visualization and feedback to directly assist visually
impaired users, which we describe next.

5.1. Predicting quality and distortion maps

The P2P++ model can be used to compute both spatial
quality maps and distortion classification maps. Since it is
trained on both global and local patch labels, it is flexible
enough to compute the quality predictions and distortion
type predictions on any number and sizes of image patches.
Inspired by [49], we utilized these outputs to create per-
ceptual quality and distortion classification maps that span
the entire image space. To generate spatial quality maps,
the image is divided into non-overlapping patches of size
N×N , on which predicted quality scores are obtained from
the model output on every patch. Similarly, on each patch,
a predicted distortion vector is obtained, with multiple val-
ues corresponding to each distortion type. Each distortion
output can be used to generate a corresponding distortion-
specific map. The patch size (N ) is easily varied, allowing
the generation of finer or coarser maps.

Fig 9 shows the predicted quality and distortion maps
(for the two most prominent predicted distortions) com-
puted on a sample test image. The quality map accurately
predicted the bottom-right part of the image to be of highest
quality, while the distortion maps predicted the bottom-left

area to be blurry, and the top most region of the image to be
underexposed. This example shows how perceived quality
and distortion localization in an image affect each other.

Fig. 9: Spatial quality and distortion maps: Predicted perceptual qual-
ity and distortion maps were generated on a sample image from our new
database 5.1. The top-right image shows the predicted perceptual qual-
ity map (blended with the original image using a magma colormap). The
bottom two images show the ‘blur’ and ‘dark’ distortion maps (and their
global scores) blended with a cividis colormap. Best viewed in color.

5.2. Feedback to assist visually challenged

Guided Photography: Our overarching goal is to build
a system able to provide feedback to visually challenged
users so that they can take better pictures. This is a very
challenging, multi-dimensional, and human-oriented prob-
lem, which requires extensive ergonomic and validation
studies with visually impaired volunteer subjects. At this
point, we built a prototype early-stage, guided feedback sys-
tem as a demonstration of how our work can be used to as-
sist visually challenged users to take better photos. The cur-
rently implemented framework is illustrated in Fig. 10. The
assistive model has two parts, a quality feedback loop and a
distortion feedback loop. The high-level, immediate model
outputs are an approximate English translation of the global
picture quality prediction and expressions of the predicted
distortion levels. Specifically, the user is provided an im-
age rating from among ‘Bad’ (0-20), ‘Poor’ (20-40), ‘Fair’
(40-60), ‘Good’ (60-80), and ’Excellent’ (80-100). If the
user is satisfied with the quality, he/she can choose to save
it, or ask for distortion feedback otherwise. In our current
prototype which is implemented on a workstation (but see
below for parallel work), the feedback is given by output
text; naturally, transcribed audio expressions will be used
in practice. If the quality is substandard, then further feed-
back is required to make the application useful. If feedback
on the distortion is requested, the user is informed of the
three major distortions determined to be present in the im-
age, along with the severity of each: High (> 0.50), Mod-
erate (0.20− 0.50), and Low (< 0.20).

Based on the nature and severities of the distortions de-
tected, our system also suggests simple ways (base feed-
back) to mitigate them. A description of the feedback that
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is currently given is available in Suppl. material. As the
user becomes more adept at the P2P++ system, they will
be able to request and take advantage of additional, more
detailed feedback on the picture distortions. To facilitate
this, P2P++ also generates 3 × 3 distortion maps for the
three most dominant impairments, and informs the user of
their relative location in the image (top-left, bottom-right,
center, etc.), as also depicted in Fig. 10.

Fig. 10: Guided Photography Framework: Flowchart of the pro-
posed assistive photography framework (Sec. 5.2), showing the series of
prompts and advice given to guide visually challenged users, from captur-
ing through saving a satisfactory photo. Feedback examples shown in Fig.
1.

Automated Photography: Although guided photography
promises to be a transformative technology, we acknowl-
edge that much work remains in terms of developing an
ideal feedback language and interface, which in term will
require working with visually challenged subjects to test
and advance the system. In the interim, there are more
immediate ways to assist visually challenged users to take
better pictures via much simpler, albeit less comprehensive
application, which can automatically help them take a bet-
ter quality photo. This can be accomplished by capturing
a short video clip of the scene the subject is trying to pho-
tograph, that includes and is approximately centered at the
moment the ‘shutter button’ is depressed. By using a broad
sampling of a single frame per second, a fairly wide range
of qualities may be presented. Given the sampled frames,
P2P++ then computes the global quality of each to deter-
mine the frame having the highest perceptual quality. The
user is provided a feedback on this quality (‘Poor’ to ‘Ex-
cellent’) and given the option to save the image. A simple
demonstration on an ORBIT [29] video is shown in Fig. 11.

Performance on ORBIT: To study the generalizability of
our model, and the representation capabilities of our dataset,
we also sought to test P2P++ on other, independent VC-
UGC data than our new dataset. Since we could not find any
such datasets, we evaluated and compared the multi-task
models on a special-purpose excerpt we created from the
ORBIT dataset, consisting of frames sampled from the OR-
BIT [29] videos. As may be observed from Table 5, P2P++
performs very well, and generally better than the much

Fig. 11: Automated photography: P2P++’s quality outputs on a sequence
are used to determine the highest quality frame among a temporally sam-
pled ORBIT [29] video (highlighted in red). Best viewed in color.

Table 5: Performance of the multi-task models when trained on our new
dataset and tested on the excerpted ORBIT dataset. All values are SRCC,
and higher values indicate better performance.

Model BLR SHK BRT DRK GRN NON Qual

IQACNN++ [21] 0.56 0.37 0.06 0.83 0.05 0.38 0.78
QualNet [14] 0.69 0.59 0.11 0.79 0.17 0.70 0.85

Xception 0.70 0.64 0.27 0.81 0.37 0.72 0.83
ResNet-50V2 0.68 0.69 0.17 0.84 0.18 0.65 0.86

P2P++ 0.72 0.71 0.30 0.83 0.37 0.72 0.86

heavier ResNet-50V2 and Xception models. All of our
models outperform other multi-task models when trained
on ournew database and tested on the excerpted ORBIT
dataset. Attaining such high performance on most distortion
classes on ORBIT validates the generalizability of P2P++ to
other VC-UGC media. The lower performance (of all mod-
els) on the ‘bright’ and ‘grainy’ categories is again due to
subject ambiguity on these classes. Fig. 11 illustrates the
actual performance and outputs produced by P2P++ when
compared to the ground truth quality scores obtained on an
ORBIT video.

6. Concluding Remarks
The success of computer vision algorithms can be largely

measured by the benefits granted to ordinary people to en-
hance their quality of life. To that end, assisting visually
impaired people to take better quality pictures can give
them more prominent voices on social media platforms,
and can also assist them with other visual tasks such as
recognition and captioning. Assessing perceptual quality
and distortions on VC-UGC is a difficult, but important
and little-addressed problem. Our work makes substan-
tive progress towards that goal by the proposed VC-UGC
targeted dataset, a VC-UGC quality and distortion predic-
tion model, and a prototype system that supplies special-
ized feedback to help guide, assist, automate, and improve
their photographic efforts. Of course, while this work is a
step in the right direction, this field is still nascent with very
significant challenges remaining.
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